Απόσπασμα Δραστηριοτήτων της χορογράφου Μαρίνας Τσαρτσάρα. Συνέντευξη για το Πρόγραμμα «Αντικείμενα, Λεγόμενα, Χειρονομίες: Ανάλυση Δραστηριότητας/ Λόγου/ Ανα-παραστάσεων της Χρήσης Ψηφιακής Τεχνολογίας για την Παραγωγή Γεωμετρικών/ Χωρικών Εννοιών». 8ο απόσπασμα. Βόλος. 2013. Πανεπιστήμιο Θεσσαλίας

 

Κατηγορία Βίντεο

Ο Δημήτρης χαμογέλασε. «Να ένα απλό παράδειγμα», είπε ανοίγοντας το σημειωματάριό του. «Από καλλιτεχνική άποψη δεν λέει σπουδαία πράματα, από γεωμετρική άποψη όμως είναι πιο περίπλοκο από το δικό σου».
«Και τι πιο περίπλοκο έχει αυτό το σχέδιο;» ρώτησε. «Απλά εξάγωνα είναι, σαν αυτά που φτιάχνουν οι φιλενάδες σου, οι σφήκες. Το μαύρο εξάγωνο αναπαράγεται σε τακτά διαστήματα οριζόντια και κατακόρυφα, σαν τα κεφάλια τα δικά μου».
Ο Δημήτρης δεν απάντησε. Έμεινε μόνο να κοιτάζει τον νέο του φίλο μ' ένα προκλητικό χαμόγελο. Προβληματισμένος ο Μώκι συνέχισε να κοιτάζει το σκίτσο. Έξαφνα το πρόσωπό του φωτίστηκε:
«Τώρα κατάλαβα!» είπε. «Αν περιστρέψεις το σχήμα γύρω από το κέντρο ενός από τα εξάγωνα, κάποια στιγμή το άσπρο εξάγωνο θα πέσει πάνω σε άσπρο, το γκρίζο σε γκρίζο και το μαύρο σε μαύρο».
«Ακριβώς!» είπε ο Δημήτρης. «Το σχήμα μου, ή μάλλον το σχέδιο της σφήκας έχει τριπλή περιστροφική συμμετρία. Τρεις φορές πρέπει να το στρίψεις, από 120 μοίρες την κάθε φορά, για να επανέλθει στην αρχική του θέση. Δες κι αυτό», συνέχισε γυρίζοντας σε μια άλλη σελίδα το σημειωματάριό του.
«Εδώ το μαύρο βέλος κάνει πρώτα ένα βήμα δεξιά, καταλαμβάνοντας τη θέση του άσπρου και μετά καθρεφτίζεται στην οριζόντια γραμμή για να βρεθεί από κάτω και δεξιά του αρχικού. Το ίδιο κάνουν όλα τα βέλη, άσπρα και μαύρα».
Τα μάτια του Μώκι έλαμψαν. «Και κοίτα πώς τα βέλη κάνουν τις ίσιες γραμμές να μοιάζουνε στραβές!» παρατήρησε. «Έχεις δίκιο! Τα σχέδιά μου μπορούν να κερδίσουν πολλά άμα προσθέσω πολυπλοκότητα και στη δομή. Ξέρεις όμως τί σκέφτομαι; Όσο πιο περίπλοκο είναι το βασικό πλακάκι, τόσο πιο δύσκολο είναι να προσδώσεις στο συνολικό σχήμα μια πολύπλοκη δομή. Να κάτι με το οποίο αξίζει να ασχοληθεί κανείς: διαιρέσεις του επιπέδου που να συνδυάζουν πολυπλοκότητα στη δομή και στο βασικό σχέδιο». Η κουβέντα τους κράτησε μέχρι αργά το βράδυ. Όταν ο Μώκι σηκώθηκε να φύγει, έτεινε στον Δημήτρη το σχέδιο με τα οχτώ κεφάλια.

Μιχαηλίδης, Μ. (2012). Ο Μέτοικος και η Συμμετρία. Αθήνα: Εκδόσεις Πόλις. σελ. 113-114


 

Κατηγορία Λογοτεχνία

Cube. 1997. Vincenzo Natali. Αποσπάσμα ταινίας από τη συλλογή "Mathematics in Movies" του Oliver Knill (Department of Mathematics-Harvard University)Π

Πλοκή: Επτά άτομα ξυπνούν σε ένα λαβύρινθο σε σχήμα κύβου και καλούνται να επιβιώσουν αποφεύγοντας τις θανάσιμες παγίδες που περιέχει.

 


 

Κατηγορία Βίντεο
Άντζελα Καλαντζή. Συνέντευξη. 10ο απόσπασμα. Βόλος. 2013. Παλιά Ηλεκτρική

 

 

Περιπέτειες της σκέψης

"Αρκεί να σκεφτούμε τι κόπους καταβάλλουμε και τώρα οι εξελιγμένοι και κάπως ειδικευμένοι με τα γεωμετρικά σχήματα, για να εξαγάγουμε λ.χ. από την συνέχεια των κινήσεων ενός αντικειμένου τον ρυθμικό νόμο στον οποίο αναλύονται."

 

Νίκος Χατζηκυριάκος Γκίκας. (1990). Περιπέτειες της σκέψης. Αθήνα: Εκδόσεις Καστανιώτη

 

Κατηγορία Ατομική

 

Ο Γκάους αναστέναξε με ανυπομονησία. Να ασχοληθεί με τα μαθηματικά. Μέχρι τότε ήθελε να στραφεί στη κλασική φιλολογία, κι ακόμα τον γοητεύει η σκέψη να γράψει κάποιο σχόλιο για τον Βιργίλιο, ειδικά για την κάθοδο του Αινεία στον Άδη. Κατά την γνώμη του, κανείς δεν είχε συλλάβει σωστά αυτό το κεφάλαιο. Αλλά έχει καιρό για κάτι τέτοιο, στο κάτω κάτω είναι μόλις δεκαεννιά. Τώρα, πάντως, οφείλει να παραδεχτεί και ο ίδιος ότι στα μαθηματικά έχει καλύτερες επιδόσεις. Αφού είσαι αναγκασμένος να ζήσεις σε αυτή τη γη επειδή κανείς δε σε ρώτησε, μπορείς τουλάχιστον να προσπαθήσεις να καταφέρεις κάτι. Για παράδειγμα, τη λύση του προβλήματος τί είναι αριθμός. Η βάση της αριθμητικής.

Σελίδα 1 από 8
Kλίμακα Έλεγχος, Πειθαρχία, Ρύθμιση Τεχνολογία Εαυτού Έμφυλη Ένταξη, Αποκλεισμός, Περιθωριοποίηση Αισθήσεις Αισθήσεις, Κιναίσθηση Αλήθεια Αλγόριθμοι Αλληλεπίδραση Κινητοποίηση Εμβύθιση Αναπαραστάσεις,συμβολισμοί,μύθοι Αναστοχασμός Αντίσταση Αντικειμενικότητα Αποδόμηση Απορία, Αβεβαιότητα Απόδειξη Αριθμός Αρνητικά Συναισθήματα Βίωμα Βεβαιότητα, Αβεβαιότητα Γεωμετρία Γλώσσα Σώματος Δημιουργία, Δημιουργικότητα Διαίσθηση Δομές , Ιεραρχίες Εγγραμματισμός Εθνομαθηματικά Εικασία, Υπόθεση Ενσώματη Γνώση Επίλυση Προβλήματος Επιχείρημα Εργαλεία Ερωτήματα Ηθική Θετικά Συναισθήματα Θετικές Επιστήμες Θρησκευτική Ικανότητα Κανόνες Κατασκευές Κοινωνική Τάξη Κοινωνική εμπειρία Κυριαρχία, Ισχύς Μαθηματικά Μαθηματικά στη Φύση Μετατόπιση, Αλλαγή Μεταφορές , Παρομοιώσεις Μηχανισμοί Μοντελοποίηση Μοτίβα Νόηση Ορθολογισμός Παιχνίδια Πολιτική Αριθμητική Πολιτισμός Πράξεις, Υπολογισμοί Προοπτική, συμμετρία Προσανατολισμός Προσομοίωση Ρητορική, Αφήγηση Συναίσθημα Σχέσεις Σχολικά μαθηματικά Σωματικές Μεταφορές Ταξινόμηση, Οργάνωση, Αρχείο Ταυτοποίηση Τεχνολογίες Τεχνουργήματα Υποκειμενικότητα Φαντασία Χάος Χαρτογραφία Ψυχή απαντησεις