Suspect X. (2008). Hiroshi Nishitani. Αποσπάσμα ταινίας από τη συλλογή "Mathematics in Movies" του Oliver Knill (Department of Mathematics-Harvard University)

 

 

 

Κατηγορία Βίντεο

Η Μεγάλη Πυραμίδα, η πυραμίδα του Χουφού ήταν πραγματικά εντυπωσιακή. Τριγυρισμένη από αρκετές μικρότερες πυραμίδες, που ανήκαν στα μέλη της οικογένειας του Φαραώ, δέσποζε πάνω απ' αυτές όπως ακριβώς δέσποζε και ο κάτοχός της-ένας από τους πιο σκληρούς και στυγερούς μονάρχες που είχε ποτέ η Αίγυπτος, αν πιστέψουμε τις γραπτές μαρτυρίες-πάνω στο λαό της κοιλάδας του Νείλου.
Ο Αχμές κοίταξε τον Άμανθυ απελπισμένος. «Πώς θα μετρήσουμε το ύψος της ;» τον ρώτησε. Δεν υπάρχουν κατακόρυφες βαθμίδες για να τις μετρήσουμε και να τις προσθέσουμε όπως κάναμε στη πυραμίδα του Ντζοζέρ».
«Τις πλευρές της βάσης είναι εύκολο να τις μετρήσουμε», είπε ο Άμανθυς. «Αν ξέραμε το σεκέτ;»
Τα μάτια του Αχμές έλαμψαν με νέα ελπίδα. «Αν ξέραμε το σεκέτ θα διαιρούσαμε το μισό της βάσης με το σεκέτ και θα βρίσκαμε το ύψος», είπε. «Δεν υπάρχουν πουθενά αρχεία όπου να αναφέρεται το σεκέτ των πυραμίδων;» ρώτησε όλο προσδοκία ο Ιντέφ.
Αυτός γέλασε. «Μα αν σώζονταν τέτοια αρχεία, θα ανέφεραν και το ύψος της πυραμίδας».
«Σωστά», είπε απογοητευμένος ο Αχμές. «Και....δεν υπάρχουν;»
«Απ' ότι ξέρω όχι», απάντησε ο Ιντέφ. «Μην ξεχνάς ότι όλα αυτά έγιναν πριν χίλια χρόνια».
«Αν μετρούσαμε το ύψος της πλαϊνής πλευράς, το ύψος του πλαϊνού τριγώνου;» πρότεινε ο Άμανθυς.
«Πάλι θα είχαμε ένα τρίγωνο που θα ξέραμε τις δυο πλευρές του αλλά δεν θα μπορούσαμε να βρούμε την τρίτη», είπε απελπισμένος ο Αχμές. «Πάμε να φύγουμε. Φαίνεται πως ποτέ κανένας δεν θα μάθει το ύψος αυτής εδώ της πυραμίδας!»
«Πού ξέρεις;» είπε ο Άμανθυς. Έδειχνε όμως και αυτός απογοητευμένος.
«Βρε παιδιά», είπε γελώντας ο Ιντέφ. «Έχετε την ευκαιρία να γνωρίσετε τα πιο θαυμαστά δημιουργήματα του ανθρώπου και σας πειράζει που δεν μπορείτε να τα.... μετρήσετε;»
«Τίποτα δεν μπορώ να γνωρίσω αν δεν μπορώ να το μετρήσω», είπε άκεφα ο Αχμές. «Τέλος πάντων, πάμε»

Μιχαηλίδης, T. (2009). Αχμές, ο γιος του φεγγαριού. Αθήνα: Εκδόσεις Πόλις. σελ. 180-181

Κατηγορία Λογοτεχνία

Ο Δημήτρης χαμογέλασε. «Να ένα απλό παράδειγμα», είπε ανοίγοντας το σημειωματάριό του. «Από καλλιτεχνική άποψη δεν λέει σπουδαία πράματα, από γεωμετρική άποψη όμως είναι πιο περίπλοκο από το δικό σου».
«Και τι πιο περίπλοκο έχει αυτό το σχέδιο;» ρώτησε. «Απλά εξάγωνα είναι, σαν αυτά που φτιάχνουν οι φιλενάδες σου, οι σφήκες. Το μαύρο εξάγωνο αναπαράγεται σε τακτά διαστήματα οριζόντια και κατακόρυφα, σαν τα κεφάλια τα δικά μου».
Ο Δημήτρης δεν απάντησε. Έμεινε μόνο να κοιτάζει τον νέο του φίλο μ' ένα προκλητικό χαμόγελο. Προβληματισμένος ο Μώκι συνέχισε να κοιτάζει το σκίτσο. Έξαφνα το πρόσωπό του φωτίστηκε:
«Τώρα κατάλαβα!» είπε. «Αν περιστρέψεις το σχήμα γύρω από το κέντρο ενός από τα εξάγωνα, κάποια στιγμή το άσπρο εξάγωνο θα πέσει πάνω σε άσπρο, το γκρίζο σε γκρίζο και το μαύρο σε μαύρο».
«Ακριβώς!» είπε ο Δημήτρης. «Το σχήμα μου, ή μάλλον το σχέδιο της σφήκας έχει τριπλή περιστροφική συμμετρία. Τρεις φορές πρέπει να το στρίψεις, από 120 μοίρες την κάθε φορά, για να επανέλθει στην αρχική του θέση. Δες κι αυτό», συνέχισε γυρίζοντας σε μια άλλη σελίδα το σημειωματάριό του.
«Εδώ το μαύρο βέλος κάνει πρώτα ένα βήμα δεξιά, καταλαμβάνοντας τη θέση του άσπρου και μετά καθρεφτίζεται στην οριζόντια γραμμή για να βρεθεί από κάτω και δεξιά του αρχικού. Το ίδιο κάνουν όλα τα βέλη, άσπρα και μαύρα».
Τα μάτια του Μώκι έλαμψαν. «Και κοίτα πώς τα βέλη κάνουν τις ίσιες γραμμές να μοιάζουνε στραβές!» παρατήρησε. «Έχεις δίκιο! Τα σχέδιά μου μπορούν να κερδίσουν πολλά άμα προσθέσω πολυπλοκότητα και στη δομή. Ξέρεις όμως τί σκέφτομαι; Όσο πιο περίπλοκο είναι το βασικό πλακάκι, τόσο πιο δύσκολο είναι να προσδώσεις στο συνολικό σχήμα μια πολύπλοκη δομή. Να κάτι με το οποίο αξίζει να ασχοληθεί κανείς: διαιρέσεις του επιπέδου που να συνδυάζουν πολυπλοκότητα στη δομή και στο βασικό σχέδιο». Η κουβέντα τους κράτησε μέχρι αργά το βράδυ. Όταν ο Μώκι σηκώθηκε να φύγει, έτεινε στον Δημήτρη το σχέδιο με τα οχτώ κεφάλια.

Μιχαηλίδης, Μ. (2012). Ο Μέτοικος και η Συμμετρία. Αθήνα: Εκδόσεις Πόλις. σελ. 113-114


 

Κατηγορία Λογοτεχνία

Κωνσταντίνος Κομνηνός. Συνέντευξη. 4ο απόσπασμα. Νοέμβριος 2007. Βόλος.

Κατηγορία Ατομική
Άντζελα Καλαντζή. Συνέντευξη. 6ο απόσπασμα. Βόλος. 2013. Παλιά Ηλεκτρική

 

 

Κατηγορία Ατομική
Σελίδα 1 από 2
Kλίμακα Έλεγχος, Πειθαρχία, Ρύθμιση Τεχνολογία Εαυτού Έμφυλη Ένταξη, Αποκλεισμός, Περιθωριοποίηση Αισθήσεις Αισθήσεις, Κιναίσθηση Αλήθεια Αλγόριθμοι Αλληλεπίδραση Κινητοποίηση Εμβύθιση Αναπαραστάσεις,συμβολισμοί,μύθοι Αναστοχασμός Αντίσταση Αντικειμενικότητα Αποδόμηση Απορία, Αβεβαιότητα Απόδειξη Αριθμός Αρνητικά Συναισθήματα Βίωμα Βεβαιότητα, Αβεβαιότητα Γεωμετρία Γλώσσα Σώματος Δημιουργία, Δημιουργικότητα Διαίσθηση Δομές , Ιεραρχίες Εγγραμματισμός Εθνομαθηματικά Εικασία, Υπόθεση Ενσώματη Γνώση Επίλυση Προβλήματος Επιχείρημα Εργαλεία Ερωτήματα Ηθική Θετικά Συναισθήματα Θετικές Επιστήμες Θρησκευτική Ικανότητα Κανόνες Κατασκευές Κοινωνική Τάξη Κοινωνική εμπειρία Κυριαρχία, Ισχύς Μαθηματικά Μαθηματικά στη Φύση Μετατόπιση, Αλλαγή Μεταφορές , Παρομοιώσεις Μηχανισμοί Μοντελοποίηση Μοτίβα Νόηση Ορθολογισμός Παιχνίδια Πολιτική Αριθμητική Πολιτισμός Πράξεις, Υπολογισμοί Προοπτική, συμμετρία Προσανατολισμός Προσομοίωση Ρητορική, Αφήγηση Συναίσθημα Σχέσεις Σχολικά μαθηματικά Σωματικές Μεταφορές Ταξινόμηση, Οργάνωση, Αρχείο Ταυτοποίηση Τεχνολογίες Τεχνουργήματα Υποκειμενικότητα Φαντασία Χάος Χαρτογραφία Ψυχή απαντησεις